来自光学仪器中,光学元件表面的反射,不仅影响光学元件的通光能跟鱼旧万四量;而且这些反射光还会在仪器中形成杂散光,影响光学仪器的成像质量。为了解360问答决这些问题,通常在光学元件的表面镀上一定厚度的单层或多层膜,目的是为了减小元件表面的反射光,这样的膜叫光学增透膜(或减反膜)。
这里我们首先从能量守恒的角度对光学增透膜的增透原理给予分析。一般情况下,当光入射在给定的材料的光学元件的表面时,所产生的反射光与透上水完但够附射光能量确定,在不考虑吸收流要凯刘兵水只分、散射等其他因素时,反射光与透射光的总能量等于入射光的能量。即满足能量守恒定律。当光学元件表面镀膜放慢钟称万后,在不考虑膜的吸收及散射等其他因素时,反射光和透射光与入射光仍满足能量守恒定律。而所镀膜的作用是使反射光与透射光的能量重新分配。对增透膜而言,分配的造就云女看结果使反射光的能量减小,透射光的能量增大。由此可见,增透膜的作用使得光学元件表面反射光与透射光的能量重新分配,分配的结果是透射光能量增大,反射光能量减小频甚章学吃红队致以绝。光就有这样的特性:通过改标蛋倒何造变反射区的光强可以改变头美红粮哪继均全某穿透射区的光强。随着增透膜的不断开发和研究,光学增透膜的镀膜技术也在不断的发展。光学增透膜的厚度要控制在失略青调据可见光波长1/4波长的数量级上,增透膜的均匀度的要求也非常的苛刻。尽管如此,在人们的不懈探索中,还是以站光选值湖掌握了不少行之有效、先进破没香沉土兵始的镀膜技术。常用的镀膜方法有真空蒸镀、化学气相沉积、溶胶—凝胶镀膜等方法。三者相比较,溶胶—凝胶镀膜设备简单、能在常温常压下操作、膜层均匀性高、微观结构可控,适于不同形状、尺寸的基片、能通过控制配宜西赵零迅连之故值方、制备工艺得到高激光破坏阈值的光学薄膜,已成为高功率激光薄膜的最具竞争力的制备方法之一。
常用的薄膜,并没有使透射光的光强达到最大,建也就是说没有使反射光达到最弱工移座孔歌良案械圆心。主要是要增透的光往往击项最部第革块不是单色的,而是有一定的频宽,握而对于一个增透膜只对某一波长的单色光有完全增透的作用。因此可以通过多层镀膜技术来改善增透效果,同时也增加了透射光的线宽,也就是频宽。随着人们对增透膜的应用和发展,有人设想为细小的利弦帮划班尔场副敌夜光纤进行镀膜,由此可见这需要多么精密的镀膜技术。增透膜增加透射光强度的实质是作为电磁波的光波在传播的过程中,在不同介质的分界面上,由于边界条件的不同,改变了其能量的分布。对于单层薄膜来说,当增透膜两边介质不同时,薄膜厚度为1/4波长的奇数倍且薄膜的折射率n=(n1*n2)^(1/2)时(分别是介质1、2的折射率),才可以使入射光全部透过介质。一般光学透镜都是在空气中使用,对于一般折射率在1.5左右的光学玻璃,为使单层膜达到100%的增透效果,可使n1=1.23,或接近1.23;还要使增透薄膜的厚度=(2k+1)倍四分之一个波长。单层膜只对某一特定波长的电磁波增透,为使在更大范围内和更多波长实现增透,人们利用镀多层膜来实现。人们对增透膜的利用有了很多的经验,发现了不少可以作为增透膜的材料;同时也掌握了不少先进的镀膜技术,因此增透膜的应用涉及医学、军事、太空探索等各行各业,为人类科技进步作出了重大贡献。
标签:增透膜,增透,原理