一、顾名思义,几何直观所指有两划却杨江点:一是几何,在这里几何是指图形;二是直观,这温汉逐里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来,几何直观就是精货李满散奏饭状依托、利用图形进行数学的思考和想象。它在本质上是一种通过图形所展开的想象能力。爱因斯:tH_(Einstein,1879—1955)曾说过一句名言:“想象力比知识更验重要,因为知识是有限的,想象力概括着世界上的一切,推动着进步,并且它是知识进化的源泉。严格地说,想象力是科学研究中的实在因素。”几何直观就是在“数学一几何一图形”这样一个关系链中让我们体会到它所带来的最大好处。这正如20世纪最伟大的数学家希尔伯特(Hilbert,传1862—1943)在其名著《直观几何》一比督现席密书中所谈到的,图形可以帮助我们发现、描述研究的问题;可以帮助我换批植帮老绍务鲜名们寻求解决问题的思路;可以帮助我们理解和记忆得到的结果。几何直观在研究、学习数零吸组足医哪输鱼胡初学中的价值由此可见落一斑。
二、从另一资个角度来说,几何直观是具体的,不是虚无的汉间越宁格四军洋,它与数学的内容紧密相连。事实上,很多重要的数学内容、那概念,例如,数,度量,函数,以至于高中的解析几何,向量,等等,都具有“双重性”,既有“数的特征”,也有“形的特征”,只有从两个方面认识它们,才能很好地理解它们、掌握它们的本质意义。也只有这样,才能让这些内容、概念变得形象、生动起来,变得更容易使学生接受并运用他们去思考问题,形成几何直观能力,这也就是经常说的“数形结合”。这次课程改革中,强调几何变换不仅是内容上的变化,也是设计几何课程指导思想上的变化,这座胶体一将是几何课程发展的方向。让图形“动起来”,在“某严宗春石放验秋旧七无运动或变换”中来研究、揭四若子己核毛任右调示、学习图形的性质,这样,一方面,加了齐审征由深了对图形性质的本质认识;另一方面,对几何直观能力也是一种提升。由此也可以看到,在义务教育阶段培养学生的几何直观是很重要的。
三、几何直观与“逻辑”“推理”也是不可分的请攻板须天龙异态有力次。几何直观常常是靠逻辑支撑的。它不仅是看到了什么?而是通过看到的图形思考到了什么?想象到了什么?这是数学非常重要而有价值的思维方式。几何直观会把看到的与以前学到的结合起来,通过思考、想象,猜想出一些可能的结论和论证思路,这也就是合情推理,它为严格证明结论奠定了基础。
有些数学研究的对象是可以“看得见、摸得着”的,而很多数学研究对象是“看不见,摸不着”的,是抽象的,这是数学的一个基本特点。但是,数学中那些抽象的对象绝不是无根之木、无源之水,它的“根和源”一定是具体的。例如,我们看不到“七维空间”,但是,我们知道“白色的光是由7种颜色的光组成的:红、橙、黄、绿、青、蓝、紫。”这就可以是理解“七维空间”的“可以看到的源”,是帮助我们联想的“实物”和基础。在数学中,需要依托“一维、二维、三维空间”去想象和思考“高维空间”的问题,这就是几何直观或几何直观能力:几何直观在研究、学习数学中是非常重要的,它也可以看做是最基本的能力,希望数学教师重视它,在日常教学中帮助学生不断提升这种能力。
标签:直观,几何,来自