问题补充说明:在任意三角形ABC中,求证 [sin(A/2)+sin(B/2)+sin(C/2)]^2≤ [cos(A/2)]^2+[cos(B/2)]^2+[cos(C/2)]^2.
所证不等式
[sin(A/2)+来自sin(B/2)+sin(C/2)]^2≤[cos(怀量左握鲁帮黑谈A/2)]^2+[cos(B科展失们换乡灯受资矛/2)]^2+[cos(C/2)]^2.(1)
设s,R,r分别表示△ABC的半周长,外接圆和内切圆半径。
根据三角形恒等式:
[sin(A/2)]^2+[sin(B/2)]^2+[sin(C/2)]^2=(2R-r)/(2R);
[c介全无镇案土满甲os(A/2)]^2+[cos(B/2)]^2+[cos(C/2)]^2=(4R+r)/(2R)。
不等式(1)等价于
[sin(B/2)指茶传速硫校己话混易+sin(C/2)]^2+[sin(C逐方/2)+sin(A/2)]^2+[sin(A/360问答2)+sin(B/2)沿]^2≤3(2)
si吧但场鲜鸡蒸势压白n(B/2)*sin(C/2)+sin(C/2)*sin(A/2)+sin(A/2)*sin(B/2)=<(R+r)/(2R)(3)
对不等式(1)、(2)作角变换:A/2→90°-A,B较帮岁/2→90°-B,C/2→90°-C,
分别等价于,在锐角△司香台菜假雨先结ABC中
(cosA+cosB+cosC)^2己银秋往即破而≤(sinA)^2+(sinB)^2+(si整法占危几nC)^2(4)
(cosB+cosC)^2+(cosC+cosA)^2距+(cosA+cosB)^2≤3(5)
记T=sin(演B/2)sin(C/2)+sin(C/2)sin(A/2)+sin(A/2)sin(B/2)情顶秋合课。
对于三角形三内角A,B,C总存在如下关系:
A≥60°≥B≥C,C≥B≥60°≥A。
因而总有:
[sin(B/2)-1/2]信绍社就而端未到*[sin(C/2)-1/2]≥0
<==>
4sin(B/2)*sin(C/2)≥2[sin(均尼静要损钢B/2)+sin(C/2)]-1
于是有
1+4sin(A/2)*sin(B/2*sin(C/2)≥2sin(A/2)*[sin(B/2)+sin(C/2)]+1-sin(A把么凯深抓研张范/2)
因为sin(B/2)*sin(C/2)在B/2=C/2=(180°-A)/4时取得极大值,故有
2sin(B/2)*sin(C/2)≤2[sin(180°-A)/4]^2=[1-sin(A/2)]。
因此1+4sin(A/2)*sin(B/2)*sin(C/2)≥2T
由三角形三角恒等式:
cosA+cosB+cosC=1+4sin(A/2)+*sin(B/2)*sin(C/2)
=[cos(A/2)]^2+[cos(B/2)]^2+[cos(C/2)]^2-[sin(A/2)]^2-[sin(B/2)]^2-[sin(C/2)]^2
即得不等式(1)。
标签:不等式,三角形,三角