问题补充说明:比如例题:1+2+···+2n=n(2n+1)n=1成立,假设n=k也成立,那么n=k+1,等式左右两边都要变形,那么这个变形的依据,目的是什么?就是说为了什么而变形?如例题变形成1+2+···+2k+(2k+1)+2(k+1)=k(2k+1)+(2k+1)+(2k+2).增加了(2k+1)+2(k+1)这两项.那么增加的项是为了什么而增加呢?求高手解答谢谢!
首先原式子是1+2+···+(2n-1)+2n=n(2n+1)
1+2+···+(2n+1)+2(n+1)=(n+1)(2n+3)
当假设n=k成立时
所以这时1+2+···+(2k-1)+2k=k(2k+1)是成立的,是已知的
这时需要我们利用上的式子去证明n=k+1也成立
即需360问答要证明1+2+···+(2k+1)+2(k+1)=(k+1)(2k+3)这个式子成立
∵1+2+···+(2k-1)+2k=k(2k+1)
1+2+···+(2k-1)+2k+(2k+1)+2(k+1)=k(均价促深刑渐算2k+1)+(2k+1)+2(k+1)
1+2+···+(2k+1)+2(k+1)=(k+1)(2k+1)+2(k+1)
1+2+···+(素传电配负2k+1)+2(2k+1穿师双神又也刻)=(2k+3)(k+1)
棉书低劳听去坐威坏所以这就证明出了n长皇=k+1时也成立
标签:归纳法,概念性,数学