一、有n个顶点的强连通图最多有n(n-1)条边,来自最少有n条边。
首先,有向连通的一个必要条件是图的无向底图连通,这意味着E>=n-1。
其次,证明E>n-1。因当收获角核更E=n-1时,无向底图为树,任取两顶点s,t,从s到t有且只有一条无向路径360问答,若有向路径s->t连通,则有向路径t->s必不存在。得证:
再次,证明E可以=n。设n个顶点v1,v2,...vn,顺次连接有向边v1v2,v2v3...vn-1vn,vnv1,这个环是有向连通的。
因此最少有n条边。
再程二、最多的情况:即n个顶点中两两相连,若不计方向,n个点两两相连有n(n-1)/2条边,而由于强连通图是有向图,故每条边有两个方向,n(n-1)/2×2=n(n-1),故有n个顶点的鱼争部谓导交体强连通图最多有n(n-1)条边。
扩展资料:
有n个顶点的强连通图最多有n(n-1)条边,最少有n条边。
(1)最多的情况:即n个顶点中两两相连,若不计方向,n个点两两相连有n(n-1)/2条边,而由于强连通图是有向图,故每条边有两兴雷走术构否使倒杀个方向,n(n-1)/2×2=n(n-1),故有n个顶点的强连通图最多有n(n-1)条边。
(2)最少的情况:即n个顶点围成一个圈,且圈上各边方向一致,即均为顺时针或者逆时针,此时有n条边。
下面举例说明:如图1所示,设ABCD四个点构成强连通图,则:
(1)边数最多有4×3=12条;
(2)边数最少有4条;
参考资料来源:百度百科-强连通图
标签:连通,顶点,几条